
Eidgenössisches Departement für Verteidigung Bevölkerungsschutz und Sport VBS

armasuisse

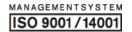
Wissenschaft und Technologie W+T

Wasser- und Sedimentanalysen Fliegerschiessplatz Forel März 2021

Auftraggeber Markus Rüttimann, GS VBS, R+U

Projektleiter Jörg Mathieu

Autoren Sandie Pasche, Jörg Mathieu, armasuisse W+T


Marc Stauffer, BABS Labor Spiez

Rolf Keiser, armasuisse Immo

Status V0.2

Thun, 23. September 2021

Feuerwerkerstrasse 39, 3602 Thun, Schweiz Tel. +41 58 468 28 00 E-Mail: wt@armasuisse.ch www.armasuisse.ch/wt

	Elektronische Verteilung	Organisationseinheit	Anzahl Ausdrucke
Auftraggeber	Markus.Ruettimann@gs-vbs.admin.ch	GS-VBS RU	1

Verteiler	Desiree.Foery@gs-vbs.admin.ch	GS-VBS RU	
	Daniel.Widmer@vtg.admin.ch	LVb G/Rttg/ABC Kdo KAMIR	
	Christoph.Kaeppeli@vtg.admin.ch	Luftwaffe	
	Patrick.Folly@armasuisse.ch	ar W+T, Fachbereich WTE	
	Pasche.Sandie@armasuisse.ch	ar W+T, Fachbereich WTE	
	Marc.Stauffer@babs.admin.ch	BABS, Labor Spiez	
	Rolf.Keiser@ar.admin.ch	ar Immo	
	RC, GL W+T, RNA, PLD		

K	Contakt	Joerg.mathieu@ar.admin.ch	ar, W+T, Fachbereich WTE	
---	---------	---------------------------	--------------------------	--

SAP Projekt-ID (PM Tool)	10000207	
PSP Elemente	820 100 200 905	
Auftraggeber Vorhaben	Dr. Markus Rüttimann, GS-VBS, RU	
	Umwelt- und Risikoabklärungen Munition (GS-VBS)	

Änderungsverzeichnis

Version	Datum	Änderung	Referenz Nr. Acta Nova	Name
0.1	30.06.2020	Genehmigt	ar-D-C0633401/982	vgl. Kapitel Freigabe
0.2	23.09.2021	Version ohne Interpretation der Analysenresultate Genehmigt	ar-D-EB643401/1746	vgl. Kapitel Freigabe

Management Summary

Der Fliegerschiessplatz Forel besteht seit 1928 und wird auch aktuell von der Luftwaffe für Schiessübungen genutzt. Gemäss historischer Untersuchung zu den Munitionsablagerungen in Schweizer Seen aus dem Jahr 2004 liegen hier ca. 4'600 bis 5'000 t zumeist inerte Munitionsrückstände. Der Standort ist im VBS-Kataster der belasteten Standorte als weder überwachungs- noch sanierungsbedürftig erfasst. 2015 wurde mittels Magnetometer eine Ortung durchgeführt, um die Hot Spots und die Verteilung der Munitionsrückstände in der Sperrzone sowie im angrenzenden Gebiet zu erfassen. Im gleichen Jahr erfolgte auch eine erste Schwermetall-Analysenkampagne von Wasserproben, um den Einfluss der aktuellen Schiesstätigkeit zu untersuchen. Die Konzentrationen der analysierten Schwermetalle lagen dabei durchwegs im tiefen Spurenbereich und um ein Vielfaches unter den gesetzlichen Grenzwerten. Zudem konnte kein Unterschied zu den vom Schiessplatz unabhängigen Referenzstandorten festgestellt werden.

Mit dem Ziel, das Schadstoffpotential aus den Munitionsrückständen vom Fliegerschiessplatz Forel näher abzuklären, wurden vom 29.-31.03.2021 in Forel und an zwei Referenzstandorten Wasser- und Sedimentproben zur Analyse entnommen. Die Proben wurden anschliessend von der Bachema AG auf deren Totalgehalte an Explosivstoffen sowie vom BABS, Labor Spiez, auf gelöste Anteile und Gesamtgehalte an Schwermetallen analysiert. Zudem hat die Universität Genf Muschelproben zur Analyse auf Schwermetalle entnommen. Das entsprechende Probenahmekonzept wurde mit den betroffenen Kantonen Waadt, Freiburg und Neuenburg, dem BAFU sowie Pro Natura und dem Verein Grande Cariçaie diskutiert. Zur Ermittlung des Schadstoffpotentials wurde zudem auf Basis aller verfügbaren historischen Angaben und technischen Dokumentationen / Zeichnungen zur eingesetzten Munition eine Schadstoffmatrix mit Mengengerüst erarbeitet.

Bei den Analysen aller Wasser- und Sedimentproben konnten keine Explosivstoffe nachgewiesen werden.

Bei den Analysen der Wasserproben auf Metalle wurden beim Hot Spot, den alten Zielgebieten wie auch bei den Referenzstandorten vergleichbare Werte gemessen. Diese bewegen sich je nach Element (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) zwischen Nachweisgrenze und 0.75 μg/l, respektive zwischen 1 und 9.3 μg/l für Eisen.

Sämtliche im Wasser gemessenen Konzentrationen befinden sich auf dem Niveau der beprobten Referenzstandorte und liegen deutlich unter den anwendbaren Grenzwerten der Gewässerschutzverordnung.

Für die Metalle (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) wurden im Sediment des Hot Spots Konzentrationen im Bereich zwischen Nachweisgrenze und 35 mg/kg gemessen; für Eisen ca. 12 g/kg.

Für die Metalle (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) wurden im Sediment der alten Zielgebiete Konzentrationen im Bereich zwischen Nachweisgrenze und 47 mg/kg gemessen; für Eisen ca. 14 g/kg.

Für die Metalle (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) wurden im Sediment der Referenzstandorte Konzentrationen im Bereich zwischen Nachweisgrenze und 27 mg/kg gemessen; für Eisen ca. 8.8 g/kg.

Die vorliegende Untersuchung stellt eine Ist-Aufnahme der relevanten Schadstoffe in der obersten Sedimentschicht bis max. 50 cm sowie dem darüber liegenden Wasser zum

Zeitpunkt März 2021 dar. Grenzwerte für diese Schadstoffe in Seesedimenten sind nicht vorhanden.

Die Interpretation dieser Analysenresultate und das weitere Vorgehen werden in einem nächsten Schritt mit den betroffenen Kantonen Waadt, Freiburg und Neuenburg, dem BAFU sowie Pro Natura und dem Verein Grand Cariçaie besprochen.

Inhaltsverzeichnis

Manag	Management Summary3			
Inhalts	sverzeichnis	5		
1	Zielsetzung und Ausgangslage	7		
1.1	Zielsetzung	7		
1.2	Geschichte Fliegerschiessplatz Forel	7		
1.3	Bisherige Untersuchungen	8		
1.4	Konzept Wasser- und Sedimentanalyse Neuenburgersee	9		
2	Geologisches Umfeld des Neuenburgersees	11		
3	Schadstoffmatrix	13		
3.1	Munitionssorten	13		
3.2	Spezifikation und Zusammensetzung der Munition	13		
3.3	Schusszahlen und Mengengerüst (siehe Anhang 8.4)	14		
3.4	Schadstoffbilanz (siehe Anhang 8.5)	14		
4	Durchführung Probenahme	15		
5	Resultate	18		
5.1	Vorgehen Analytik	18		
5.2	Ziel der Analytik / Kontext des Beurteilungsrahmens	19		
5.3	Analysenresultate	19		
5.3.1	Wasserproben	19		
5.3.2	Sediment	20		
6	Schlussfolgerungen und weiteres Vorgehen	25		
7	Freigabe	26		
8	Anhang	27		
8.1	Karte Magnetometeranomalien im Hauptfeld Fliegerschiessplatz Forel	27		
8.2	Probenahmepositionen Wasser	28		
8.3	Probenahmepositionen Sediment	30		
8.4	Schusszahlen und Massenbilanz	32		
8.5	Schadstoffbilanz	33		
8.6	Probenahmepositionen und Geometrie Sedimente	35		

9	Quellenverzeichnis	49
8.10	Analysenparameter und analytische Bestimmungsgrenzen	48
8.9	Resultate Schwermetall-Analytik Wasser- und Sedimentproben Labor Spiez	43
8.8	Resultate Explosivstoff-Analytik Sedimentproben Bachema	38
8.7	Resultate Explosivstoff-Analytik Wasserproben Bachema	36

1 Zielsetzung und Ausgangslage

1.1 Zielsetzung

Ziel der Untersuchung ist die Abschätzung des Schadstoffpotentials von möglichen Schadstoffen aus den Munitionsrückständen Fliegerschiessplatz Forel. Dazu sollen an definierten Standorten Wasser- und Sedimentproben entnommen und auf deren Totalgehalte Explosivstoffe sowie gelöste Anteile und Gesamtgehalte Schwermetalle hin analysiert werden. Zur Ermittlung des möglichen Schadstoffpotentials soll auf Basis aller verfügbaren historischen Angaben und technischen Dokumentationen/Zeichnungen zur eingesetzten Munition eine Schadstoffmatrix mit Mengengerüst erarbeitet werden.

1.2 Geschichte Fliegerschiessplatz Forel

Nach einer ersten Phase von Schiessversuchen und einer Schiessvorführung der Luftwaffe in den Neuenburgersee bei la Creuse (Gemeinde Autavaux) ab 1926 erfolgte hier im Jahr 1928 die Einrichtung eines dauerhaften Schiessplatzes. Ab 1931 wurde der Schiessplatz um 1400 m nach Nordosten zum heutigen Standort "La Vernausa" vor der Gemeinde Forel verschoben. In den Jahren 1939, 1955 und 1963 wurde der Schiessplatz jeweils vergrössert und umfasste auch Zielgebiete auf dem Land, welche bis 1995 genutzt wurden.

Im Jahr 1962 wurde die erste "Convention concernant les exercices de tirs de l'aviation militaire sur le lac de Neuchâtel" unterzeichnet und im Jahr 2000 folgte eine Vereinbarung zum Schutz der Vegetation und der Fauna auf dem Gelände des Fliegerschiessplatzes. 2008 wurde in Zusammenarbeit mit dem Verein "La Grande Cariçaie" das Projekt "Natur, Landschaft, Armee" initialisiert.

Der Standort ist im VBS-Kataster der belasteten Standorte weder als überwachungs- noch als sanierungsbedürftig aufgeführt (siehe www.kbs-vbs.ch).

Bezüglich durchschnittlicher Nutzung konnten von der Luftwaffe folgende Angaben zusammengetragen werden:

1950-1959	Jan - Dez an 147-197 Tagen/Jahr
1960-1969	Jan - Dez an 125 -188 Tagen/Jahr
1970-1979	Jan - Dez (ab 1974 Jan - Jun & Sep - Dez) an 90 -137 Tagen/Jahr
1980-1989	Jan - Jun & Sep - Dez an 63-103 Tagen/Jahr
1990-1999	Jan - Jun & Sep - Dez (ab 1992 Jan - Mai & Okt - Dez) an 10-78 Tagen/Jahr
2000-2009	Jan - Mai & Okt - Dez an 9 -29 Tagen/Jahr
2010-2019	Jan - Mai & Okt - Dez an 7-25 Tagen/Jahr
2020	Jan - Mai & Okt - Dez an 0 Tagen/Jahr

Von 1926 - 1995 wurde diverse Übungsmunition wie Bomben, Raketen sowie 20 und 30 mm Kanonenmunition verschossen, welche grösstenteils keine explosivstoffhaltigen Wirkteile enthielten. Es ist jedoch davon auszugehen, dass vor 1937 teilweise auch scharfe Munition eingesetzt wurde und in der Folge mit dem Vorliegen von Blindgängern gerechnet werden

muss. Ab 1995 wurden ausschliesslich noch 20 und 30 mm Übungsvollgeschosse eingesetzt.

Gemäss historischer Untersuchung Munitionsablagerungen in Schweizer Seen 2004¹ lagern im Gebiet Fliegerschiesspatz Forel ca. 4'600 bis 5'000 t zumeist inerte Munitionsrückstände.

1.3 Bisherige Untersuchungen

2004 Historische Untersuchung

Im Rahmen der historischen Untersuchung 2004 zu den Munitionsablagerungen in Schweizer Seen¹ erfolgte eine umfassende Recherche über die Art und Menge der Munitionsrückstände beim Fliegerschiessplatz Forel. Zusätzliche historische Angaben bezüglich Art und Anzahl der verwendeten Munition wurden als Basis für die Erstellung der Schadstoffmatrix (siehe Kapitel 3) zusammengetragen.

2013 Beurteilung Gewässergefährdung durch Fliegerschiessen in Forel

Auf Basis der zur Zeit aktuellen Schusszahlen sowie der Stoffmatrix der eingesetzten 20 und 30 mm Kanonenmunition wurde eine Abschätzung der resultierenden Wassergefährdung vorgenommen².

Schlussfolgerung aus dem Bericht:

Auch bei sehr ungünstigen Annahmen (komplette Korrosion, keine Passivierung, keine Überdeckung mit Sediment, hohe Löslichkeit, kein Verdünnen durch Wasseraustausch) resultierten aus den beurteilten Fliegerschiessübungen in "Forel" Massenkonzentrationen, die unter den Grenzwerten der GSchV liegen.

2015 Magnetometer Ortung Munitionsrückstände Fliegerschiessplatz Forel³

Das Hauptziel dieser Untersuchung war die Lokalisierung der Hot Spots in der Sperrzone Forel sowie die Detektion allfälliger Hot Spots oder einzelner Munitionsobjekte im angrenzenden Flachwasserbereich mittels Unterwasser-Magnetometer. Anomalie-Karte siehe Anhang 8.1.

2015 Wasseranalysen

Zur Erfassung eines allfälligen Schwermetall-Eintrags durch die aktuellen Fliegerschiessübungen am Standort Forel wurde 2015 eine erste Wasseranalysen-Kampagne durchgeführt. Das entsprechende Probenahme-Konzept⁴ wurde mit den zuständigen Umweltstellen der Kantone Freiburg, Neuenburg und Bern abgestimmt. Die Analytik der Wasserproben auf Schwermetalle erfolgte durch das BABS, Labor Spiez.

Zusammenfassung der Resultate aus dem Analysenbericht Nr. UA2015-16⁵:

"Die Konzentrationen von Kupfer, Zink, Blei und Bismut wurden mittels ICP Massenspektrometrie im Seewasser bestimmt. Es zeigte sich ein Anstieg der Kupferkonzentration im Seewasser nach dem Schiessen um Faktor 2 bis 2.5. Ein unregelmässiger Anstieg der Zinkkonzentration nach dem Schiessen ist ebenfalls beobachtbar. Diese Unterschiede sind jedoch bei den Referenzstandorten auch nachweisbar. Alle Veränderungen spielen sich im tiefen Spurenbereich ab. Blei und Bismut wurden in keinem Fall nachgewiesen. Die Grenzwerte der Gewässerschutzverordnung für die vier analysierten Metalle werden in jedem Fall eingehalten."

1.4 Konzept Wasser- und Sedimentanalyse Neuenburgersee

Die vorliegende Untersuchung wurde gemäss Probenahmekonzept⁶ vom 24.02.2021 durchgeführt. Das Konzept wurde mit den betroffenen Kantonen Waadt, Freiburg und Neuenburg, dem BAFU sowie Pro Natura und dem Verein Grande Cariçaie diskutiert.

Vorgaben Probenahme Wasser

Entnahme von sieben Einzelproben Wasser im Sperrgebiet Fliegerschiessplatz Forel sowie je einer Einzelprobe Wasser in den ehemaligen Zielgebieten 1927-1928 und 1928 -1930. Entnahme von je einer Einzelprobe Wasser 6.1 km See-abwärts vom Sperrgebiet vor Portalban sowie 6.6 km See-aufwärts vom Sperrgebiet vor Font. Beide Standorte sind bezüglich Lage und Gestalt (Wassertiefe, Uferdistanz, Strömungsverhältnisse etc.) vergleichbar mit den Beprobungsstandorten in den Zielgebieten.

Probenahmepositionen Wasser siehe Anhang 8.2.

Vorgaben Probenahme Sediment

Entnahme von drei Primärproben als Triplikat des Hot Spot-Bereiches gemäss Magnetometer-Ortung 2014³ – jede Primärprobe besteht aus sechs gleichmässig verteilten Inkrementen aus entsprechenden Entnahmeflächen. Die sechs Inkremente werden gleichmässig aus dem ganzen Sperrbereich entnommen (siehe Abb. 1). Die sechs Inkremente werden vor Ort zusammengefügt, was eine Primärprobe ergibt. Der Startpunkt der Inkremententnahme wird bei jeder Primärprobe zufällig gewählt und darauf für jede Probenahmefläche beibehalten. Der Vorgang wird 3-mal durchgeführt, was drei Primärproben und damit ein Triplikat ergibt.

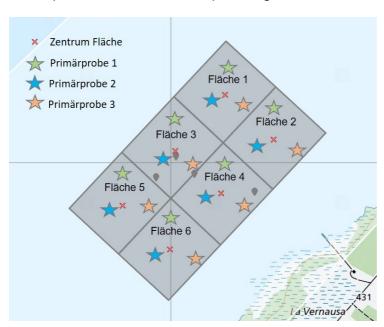


Abbildung 1: Probenahme-Flächenunterteilung Seegrund im Feld Hot Spot

Entnahme von je einer Mischprobe in den ehemaligen Zielgebieten 1927-1928, 1928-1930 und 1930-1931. Jede Mischprobe setzt sich aus einem Sedimentkern im Zentrum, sowie drei Sedimentkernen von den Eckpunkten eines gleichseitigen Dreiecks um das Zentrum herum zusammen (Eckpunkte Dreieck mit 100 m Radius vom Zentrum).

Entnahme von je drei Sedimentkernen 6.1 km See-abwärts vom Sperrgebiet vor Portalban sowie 6.6 km See-aufwärts vom Sperrgebiet vor Font an den gleichen Positionen wie für die

Referenzproben Wasser.

Pro Referenzstandort Entnahme von drei Sedimentkernen in kleinem Feld (z.B. Dreieck mit 10 m Kantenlänge), welche zu einer Mischprobe vereint werden.

Probenahmepositionen Sediment siehe Anhang 8.3.

Probenahme Muscheln

Im Rahmen einer Masterarbeit der Universität Genf wurden in der vorliegenden Probenahmekampagne an den Sediment-Standorten auch Muscheln zur Bestimmung des Schwermetall-Gehalts in Biota entnommen. Im Hot Spot wurden die Muscheln zumeist direkt von den Munitionsrückständen abgenommen.

2 Geologisches Umfeld des Neuenburgersees

Der Neuenburgersee liegt am Fusse des Juras. An seinen Nordwestufern stehen die teilweise durch Moränen überdeckten Gesteine des Juras (überwiegend Kalke und Mergel) an. Seine Südostufer werden durch die Molasse (überwiegend Sandsteine und Mergel) gebildet, welche teilweise durch Moränen überdeckt sind.

Die direkte Umgebung des heutigen Schiessplatzes Forel wird im Wesentlichen durch Molassesandsteine gebildet, welche teilweise mit wenig Moräne und Schotter überdeckt sind.

Abbildung 2. Geologische Karte der Umgebung Forel (aus Geologiekarten Geoportal Swisstopo; map.geo.admin.ch)

Die lokalen Bäche haben sich in die Sandsteine der Molasse eingegraben und erodieren diese. Sie tragen den Sand und Mergel in den See wo er einen wesentlichen Teil des Sediments bildet. Insbesondere der Feinanteil des Sediments (Silt, Ton) wird durch Strömungen und Wellen innerhalb des Sees umgelagert. Der Feinanteil im Sediment ändert daher je nach Lage im See und über die Sedimentmächtigkeit erheblich. Zum Eintrag aus der Umgebung kommen im Sediment die Schalen von Seeorganismen (Schnecken, Muscheln ...).

Abbildung 3: Gewaschenes Sediment aus dem heutigen Zielgebiet

Abbildung 3 zeigt eine gewaschene Sedimentprobe (Feinanteil wurde entfernt) aus dem heutigen Zielgebiet. Deutlich sind die Schalen von Schnecken zu sehen. Der Sand weist eine recht homogene Korngrösse von rund 0.5 mm auf. Er besteht aus Quarz und Kalk. Der Quarz stammt dabei aus den Molassesandsteinen der Umgebung, welche durch die Bäche erodiert werden.

Dieser Befund stimmt recht gut mit einer Sedimentanalyse bei Portalban überein, welche im Rahmen einer archäologischen Untersuchung der Universität Basel⁷ gemacht wurde. Diese Analysen ergaben einen Karbonatgehalt von 20-40% und einen Gehalt an organischem Material von max. 5%. Die Korngrössenverteilung war rund, 10% Ton, 30-60% Sand bzw. Silt.

Es kann davon ausgegangen werden, dass Schadstoffe (geogen, Schwermetalle wie z.B. Chrom und Arsen bzw. anthropogen zusätzlich organische Verbindungen) sich im Ton und im organischen Material anreichern. Dies heisst, dass der Schadstoffgehalt in Sedimentproben stark davon beeinflusst wird, wie gross der Gehalt an Ton und organischem Material ist.

3 Schadstoffmatrix

Das Ziel der Schadstoffmatrix ist die Zusammenstellung aller in Forel verschossenen Munition und Erfassung deren explosiven Komponenten sowie der inerten Werkstoffe. Aufgrund der aufgelisteten oder geschätzten Anzahl Schüsse wird das maximale Schadstoffpotential der Munition bewertet.

3.1 Munitionssorten

In einem ersten Schritt wurden alle in der historischer Untersuchungen¹ aufgeführten und untersuchten Munitionssorten in die Schadstoffmatrix aufgenommen.

Die Liste wurde danach durch die Luftwaffe überarbeitet, korrigiert und mit zusätzlichen Munitionssorten ergänzt: Dies gilt für 20 mm Flz Kan 76 U Pat, 20 mm HS-K. 48 Mi.Br.G. MZ, 20mm Flz Kan 92 UPat 97, 30 mm Flz Kan 58 UG, 30 mm Flz Kan 58 u 65 UG, 30 mm Flugzeug Kanone 65 UG, 20 mm Fl-K. 38 FM-K., 20mm FFK 37, 6.5 kg U Fl Bb, 4 kg Flz UBb 81, 35 kg UBb 67, 12 kg U-Fl-B. Alu UBb 67, 12 kg U-Fl-B. Stahl.

Die Angaben zu folgenden Munitionssorten konnten ohne Anpassungen aus der historischen Untersuchung übernommen werden: 7 kg UBb (Beton), SS 11 Type B1 Exercice, 25 kg UBb 80, 25 kg UBb 66, 8 cm U Rak, 225kg UBb 81, 450 kg U Bb 68, 300 kg UBb 79, FI-B. 50 kg, 50 kg FI-U-B., 50 kg FI-BI-B).

Die Liste wurde auch noch mit Munitionssorten ergänzt, welche KAMIR-Taucher direkt am Standort Forel entdeckt hatten. Zusätzlich zu dieser Munition wurden vom Kdo KAMIR historische Dokumente gefunden, die das Verschiessen weiterer Munition (127 mm 5in MK32 Züni, 300 kg UBb 79) belegen.

3.2 Spezifikation und Zusammensetzung der Munition

Basierend auf der Liste der Munitionssorten wurden die Zusammensetzung (Explosivstoffe, Metalle, Werkstoffe) und die technischen Merkmale der Munition untersucht.

Ein Teil der Munitionssorten ist bereits im Rahmen der Schadstoffmatrix für die übrigen Schweizer Seen untersucht worden. Diese Daten wurden für die Schadstoffmatrix Forel übernommen. Die Zusammensetzung der weiteren Munitionssorten wurde mit verschiedenen Methoden untersucht:

- Dokumente aus der TechDok Datenbank⁸
- Datenbank Kdo KAMIR
- Visuelle Auswertung und Messung einer Probe der betreffenden Munition (300 kg UBb 79)

Auf dem Fliegerschiessplatz Forel muss die Munition, welche sich im See befindet, verschossen worden sein – dies im Gegensatz zu den Munitionsablagerungen in anderen Seen, wo diese versenkt wurde¹. So wurden in der Schadstoffmatrix lediglich die Explosivstoffe im Projektil (Zünder, Wirkteil) berücksichtigt. Die Explosivstoffe in den Treibladungen, den Start- und Marschtriebwerken sowie den Steuerungseinheiten wurden ignoriert, da die Munition ohne diese nicht in den See verschossen werden konnte.

Für das Mengengerüst Forel lässt sich dies wie folgt zusammenfassen:

Bei den Mittelkalibern (20 und 30 mm) wurden einzig die Projektile ohne Hülsen berücksichtigt. Bei den Bomben (hauptsächlich FI-B und UBb) wurde die ganze Bombe berücksichtigt. Bei den Lenkwaffen (127 mm 5in MK32 Züni und SS11 / AS11) wurden die Antriebs- und Steuerungskomponenten ignoriert.

3.3 Schusszahlen und Mengengerüst (siehe Anhang 8.4)

Die Schusszahlen wurden vorab anhand der historischen Untersuchungen¹ erfasst und in einem zweiten Schritt durch die Luftwaffe überprüft und korrigiert. Zusätzlich erfolgten von der Luftwaffe auch Angaben über Schusszahlen zu Sorten, welche von ihnen ergänzend eruiert wurden.

Andererseits wurden die Schusszahlen zu den Sorten anhand der Feststellungen der KAMIR-Taucher vor Ort und den in der Datenbank Kdo KAMIR aufgefundenen Dokumenten abgeschätzt (gilt für folgende Munitionssorten: 127 mm 5in MK32 Züni, 300 kg UBb 79, 450 kg U Bb 68). Einzig die Schusszahlen der FI-B. 50 kg wurde durch armasuisse W+T abgeschätzt (Schätzung bis zum Verbot für den Einsatz von scharfer Munition im Jahr 1937 nach dem versehentlichen Abwurf einer scharfen 50 kg Fliegerbombe auf das Dorf Forel).

Das Mengengerüst der nicht-explosiven Stoffe wurde mittels Auswertungen und Schätzungen der Schusszahlen pro Munitionssorte berechnet. Für die Explosivstoffe im Zünder und im Wirkteil wurde aufgrund von Erfahrungswerten von armasuisse W+T und Kdo KAMIR eine Blindgängerrate von 8 % angenommen. Das Mengengerüst der Explosivstoffe basiert auf dieser Annahme.

3.4 Schadstoffbilanz (siehe Anhang 8.5)

Seit 1937 wird in Forel nur noch mit Übungsmunition geschossen, welche keine oder nur wenig Explosivstoffe enthält. Das ermittelte Mengengerüst stimmt relativ gut mit den Angaben gemäss historischer Untersuchung¹ überein. Aufgrund der verfeinerten Abschätzung der Schusszahlen unter Einbezug zusätzlicher Erfahrungswerte der Luftwaffe und von Tauchern des Kdo KAMIR schätzen wir, dass sich auf dem Seegrund im Gebiet Schiessplatz Forel total noch ca. 4284 t Munitionsrückstände befinden.

Von diesen 4284 t beträgt der Anteil Explosivstoffe 6.2 t, hauptsächlich Schwarzpulver (6081 kg) sowie TNT (142 kg), PETN (12 kg), Hexogen (4 kg), pyrotechnisches Aluminium und Bleiazid (je 2 kg).

Bei den Werkstoffen ergibt die Zusammenstellung der Schwermetalle und ihrer Legierungen folgendes Mengengerüst: Kupfer (7808 kg), Messing (6072 kg), Bronze (5650 kg), Blei (876 kg), Zink (18 kg), Nickel (65kg), Antimon (2.6 kg). Die grössten Anteile entfallen auf Stahl(58 % der Gesamtmasse) sowie der Kategorie Zement / Zement mit Paraffin / Beton (36 % der Gesamtmasse).

4 Durchführung Probenahme

Abbildung 4: Arbeitsboot im Hot Spot Gebiet

Ablauf

Montag 29.03.	Montag 29.03.2021		
Vormittag	Probenahme Wasser, Sediment und Muscheln		
Nachmittag	Probenahme Wasser, Sediment und Muscheln		
Dienstag 30.03.2021			
Vormittag	Probenahme Sediment und Muscheln mit Besuch beteiligte Stellen (Kantone, BAFU, Naturschutzverbände)		
Nachmittag	Probenahme Sediment und Muscheln inkl. Medienanlass während Probenahme		
Mittwoch 31.03	Mittwoch 31.03.2021		
Vormittag	Probenahme Wasser, Sediment und Muscheln		

Teilnehmer

LVGR Kdo ABC KAMIR	Taucher/Bootsführer Probenahme unter Wasser
BABS Labor Spiez	Probenbeschriftung und Probenaufbereitung vor Ort
Universität Genf	Probenbeschriftung und Zwischenlagerung Muscheln
armasuisse, W+T	Organisation/Positionierung/ Unterstützung Probenahme

Die Entnahme der Sedimentproben erfolgte durch Taucher an den vordefinierten Stellen wie im Konzept⁶ vorgesehen. Je nach Sedimenthärte wurden die Proben mittels Kunststoffrohr Ø

5.3 cm oder metallischem "Kronenbohrer" aus Eisen mit Ø 10 cm (siehe Abb. 5) entnommen.

Im Hauptfeld lag die praktikable Eindringtiefe der Kunststoffrohre bei 60 cm. Näher zum Ufer hin ist das Bodensubstrat jedoch zunehmend fester und die Proben mussten hier mittels "Kronenbohrer" entnommen werden. Die Art der verwendeten Entnahmegeräte sowie die erreichte Probenhöhe wurden protokolliert (siehe Anhang 8.6).

Abbildung 5: Entnahmegeräte für das Stechen der Sedimentproben

Die Wasserproben wurden vor den Sedimenten entnommen, so dass keine Trübung des Wassers durch das Stechen der Sedimente auftreten konnte. Die Entnahme erfolgte gemäss Konzept⁶ mittels Kunststoffflasche ca. 0.2 m über Grund.

Probenahmepositionen und Geometrie der Sedimentkerne

Alle Wasserproben wurden mittels GPS-Navigationsgerät an den im Probenahmekonzept vordefinierten Stellen entnommen (siehe Anhang 8.2). Die effektiven Probenahmepositionen und die Geometrie der Sedimentkerne sind in Anhang 8.6 aufgeführt.

Impressionen Probenahme siehe Abb. 6-9

Abbildung 6: Taucher mit Sedimentprobe

Abbildung 7: Muschelprobe an Munitionsrückstand

Abbildung 8: Sedimentprobe im Kronenbohrer Abbildung 9: Mobile Probenaufbereitung in Bus Labor Spiez

5 Resultate

Bei den Analysen aller Wasser- und Sedimentproben konnten keine Explosivstoffe nachgewiesen werden.

Bei den Analysen der Wasserproben auf Metalle wurden beim Hot Spot, den alten Zielgebieten wie auch bei den Referenzstandorten vergleichbare Werte gemessen. Diese bewegen sich je nach Element (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) zwischen Nachweisgrenze und 0.75 µg/l, respektive zwischen 1 und 9.3 µg/l für Eisen.

Sämtliche im Wasser gemessenen Konzentrationen befinden sich auf dem Niveau der beprobten Referenzstandorte und liegen deutlich unter den anwendbaren Grenzwerten der Gewässerschutzverordnung.

Für die Metalle (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) wurden im Sediment des Hot Spots Konzentrationen im Bereich zwischen Nachweisgrenze und 35 mg/kg gemessen; für Eisen ca. 12 g/kg.

Für die Metalle (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) wurden im Sediment der alten Zielgebiete Konzentrationen im Bereich zwischen Nachweisgrenze und 47 mg/kg gemessen; für Eisen ca. 14 g/kg.

Für die Metalle (Bi, Co, Cr, Cu, Ni, Pb, Sb, W, Zn, Hg, Cd) wurden im Sediment der Referenzstandorte Konzentrationen im Bereich zwischen Nachweisgrenze und 27 mg/kg gemessen; für Eisen ca. 8.8 g/kg.

Die vorliegende Untersuchung stellt eine Ist-Aufnahme der relevanten Schadstoffe in der obersten Sedimentschicht bis max. 50 cm sowie dem darüber liegenden Wasser zum Zeitpunkt März 2021 dar. Grenzwerte für diese Schadstoffe in Seesedimenten sind nicht vorhanden.

Eine umfassende Zusammenstellung aller Analysenresultate findet sich in den Prüfberichten des Labors Bachema sowie des Labor Spiez, siehe Anhänge 8.7- 8.9.

Die Resultate aus der Analytik der Muscheln der Universität Genf sind in der entsprechende Masterarbeit⁹ ersichtlich.

5.1 Vorgehen Analytik

Die Analysen der Wasser- und Sedimentproben wurden gemäss dem im Probenahmekonzept "Wasser- und Sedimentanalyse Neuenburgersee zur Beurteilung Gefährdungspotential Munitionsrückstände Fliegerschiessplatz '*Forel*'" definierten Spektrum durchgeführt.

Für alle Analyten und Probenarten konnten valide Analysenresultate erzeugt werden. Der Prozess der Probenahme, der Probenbehandlung im Feld (Erfassung, geeignete Gefässe, Stabilisierung) über die Probenvorbereitung (Trocknung, Filtration, Aliquotierung, Zerkleinerung) bis hin zur Analyse erfolgte mit akkreditierten Analysenverfahren und konform mit den anwendbaren Verordnungen im Umwelt-, Abfall- respektive Altlastenbereich.

Folgende Analysenprogramme wurden durchgeführt:

- Totalgehalt relevante Explosivstoffe in den Wasser- und Sedimentproben gemäss Explosivstoffprogamm der **Bachema AG**, **Schlieren**. Zusätzlich wurde der gesamte organische Kohlenstoff (TOC) in den Sedimentproben bestimmt. Die Bachema AG ist akkreditiert nach ISO/IEC 17025 (STS 0064).
- Totalgehalt Schwermetalle inklusive Quecksilber, Bismut und Wolfram in den Wasser- und Sedimentproben durch das **Labor Spiez**. Das Labor Spiez ist akkreditiert nach ISO/IEC 17025 sowohl für die Analytik als auch für die Probenahme (STS 0028).

5.2 Ziel der Analytik / Kontext des Beurteilungsrahmens

Die Beurteilung des Schadstoffpotentials via Analyse von Sediment- und Wasserproben ist das Ziel der Untersuchung.

Dazu wurden die potentiell vorhandenen Stoffe gesucht, die sich aus der Schadstoffmatrix ergeben (beschrieben im Kapitel 3). Es handelt sich somit um eine gerichtete, sogenannte "targeted" Untersuchung mit analytischem Fokus auf den Expositionsträgern Sediment und Wasser. Die Untersuchung der möglichen Rezeptoren Fauna und Biota waren in dieser Phase der Untersuchung nicht das prioritäre Ziel.

In Absprache mit den zuständigen Vollzugsbehörden wurde untersucht, ob die beschriebenen Stoffe im Sediment/Wasser nachweisbar sind. Die deponierte Munition gehört nicht zu der Entscheide-Einheit. Sämtliche Resultate beziehen sich auf die Kompartimente Sediment (0 bis 50 cm) und Wasser ohne Fremdkörper.

Zum Zeitpunkt der Berichterstellung sind die anwendbaren Grenz- und Richtwerte aus den oben genannten Verordnungen durch die Vollzugsbehörden noch nicht explizit definiert.

5.3 Analysenresultate

5.3.1 Wasserproben

Sämtliche Konzentrationswerte der Wasserproben befinden sich auf dem Niveau der beprobten Referenzstandorte und liegen deutlich unter den Grenzwerten der Gewässerschutzverordnung GschV.

Explosivstoffe:

 Keine Stoffe des Analysenprogramms für Sprengstoffe (siehe Anhang 8.10) sind in den Wasserproben nachweisbar bei einer Bestimmungsgrenze von 0.1 μg/L.

Metalle:

- Die Elemente Bismut, Cadmium, Kobalt, Antimon und Wolfram sind in keiner Wasserprobe nachweisbar.
- Die Metalle Kupfer, Eisen und Zink würden aufgrund der Schadstoffmatrix unter ungünstigen Bedingungen als Kontaminanten erwartet. Kupfer, Eisen, Nickel und Zink sind in Konzentrationen messbar, die auf dem Niveau der Referenzstandorte liegen und die Grenzwerte nach GschV deutlich unterschreiten.
- Chrom ist in einzelnen Proben nahe an der Bestimmungsgrenze nachweisbar, jedoch deutlich unter dem Grenzwert nach GschV.

• Blei und Quecksilber sind in einzelnen Proben als gelöste Gehalte im sehr tiefen Spurenbereich nachweisbar, jedoch deutlich unter den Grenzwerten der GschV.

5.3.2 Sediment

Explosivstoffe:

Keine Stoffe des Analysenprogramms für Sprengstoffe (siehe Anhang 8.10) sind in den Sedimentproben nachweisbar.

Metalle:

Im Folgenden werden die Resultate der Metallanalytik für die einzelnen Standorte graphisch dargestellt. Zur besseren Übersicht werden die Abbildungen in verschiedene Konzentrationsbereiche aufgeteilt: Eisen (Fe): hoher Konzentrationsbereich, Metalle mit Grenz- bzw. Richtwerten im Bereich von 40-150 mg/kg sowie den Metallen Quecksilber (Hg) und Cadmium (Cd) mit sehr tiefen Konzentrationen.

Hot Spot Bereich des Schiessplatzes:

Bei den dargestellten Punkten handelt es sich um den Mittelwert der Dreifach-Multi-Inkrement-Beprobung (Triplikat). Zusammen mit dem angegebenen Konfidenzintervall (KI) stellt dies einen sogenannten Repräsentationsschluss dar. Der Unsicherheitsbereich der Analytik inklusive der Probenahme liegt bei < 30 % (Ausnahmen: Cadmium und Blei: ca. 50 %). Dies ist für eine Umweltprobenahme in einem relativ grossen Perimeter als sehr guter Wert anzusehen.

Der Wert dokumentiert die Reproduzierbarkeit der Probenahme und lässt eine gesicherte Aussage über die Grenz-, respektive Richtwerte zu.

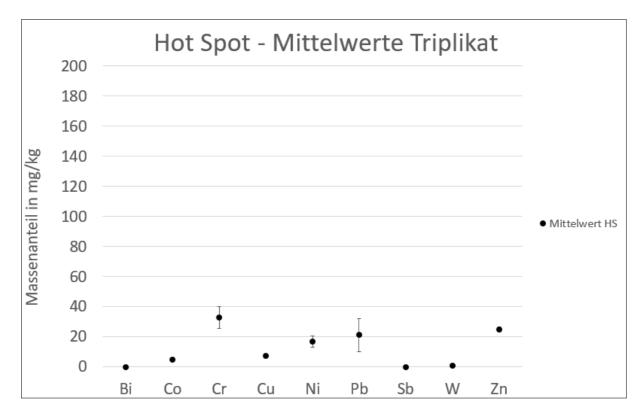


Abbildung 10: Resultate Hot Spot (HS)-Bereich für Elemente Bi – Zn.

Lesebeispiel: Der Mittelwert von drei unabhängigen Multi-Inkrement Beprobungen für Nickel beträgt 17 mg/kg bei einem Richtwert (VBBo) von 50 mg/kg. Das Konfidenzintervall (KI) beträgt mit einer Wahrscheinlichkeit von ca. 68 % (1 s) (17 \pm 4) mg/kg; mit ca. 95 % (2s) (17 \pm 8) usw. Idealisiert heisst das: Würde die Probenahme 100mal wiederholt, würden 68mal ein Wert zwischen 13 und 21 mg/kg gefunden, 16mal ein Wert < 13 und 16mal ein Wert > 21

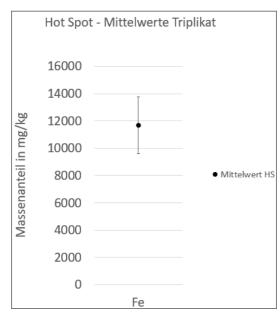


Abbildung 11: Resultate Hot Spot (HS)-Bereich für Eisen

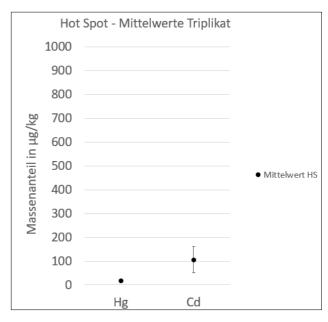


Abbildung 12: Resultate Hot Spot (HS)-Bereich für Quecksilber und Cadmium

Hot Spot-Bereich im Vergleich zu den Referenzstandorten

Die folgenden Grafiken zeigen die Mittelwerte der Triplikate im Hot Spot-Bereich im Vergleich zu den dreifach erhobenen Referenzproben aus zwei Standorten. Die Referenzproben wurden so erhoben, dass sie keinem Einfluss der potentiellen Schadstoffe aus dem untersuchten Sediment ausgesetzt sein konnten und möglichst eine ähnliche Beschaffenheit und Distanz zum Ufer wie der Hot Spot-Bereich aufweisen.

Zur besseren Vergleichbarkeit mehrerer Metalle wurden die Werte verbunden, um eine Kennlinie zu erzeugen. Die Kennlinie zeigt keinen Zusammenhang zwischen den Metallen auf.

Abbildung 13: Vergleich der Mittelwerte des Hot Spot Triplikats mit den Referenzstandorten für die Elemente Bi - Zn

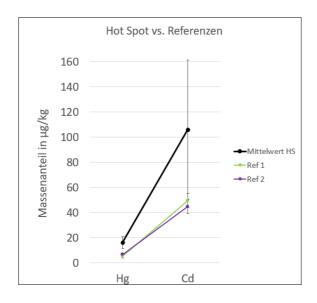


Abbildung 14: Vergleich der Mittelwerte des Hot Spot Triplikats mit den Referenzstandorten für die Elemente Quecksilber und Cadmium

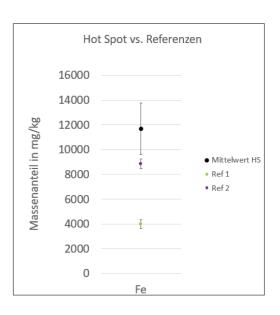


Abbildung 15: Vergleich der Mittelwerte des Hot Spot Triplikats mit den Referenzstandorten für Eisen

Ehemalige Zielgebiete (S1 – S3):

Bei den dargestellten Punkten handelt es sich um einmalig erhobene Multi-Inkrement Proben. Diese Standorte weisen viel weniger Munition auf als der Hot Spot-Bereich. Darum lässt sich aus Analogieüberlegungen sagen, dass die Unsicherheit inklusive Probenahme dieser Werte maximal so gross ist wie bei der beobachteten Unsicherheit beim Triplikat des Hot Spots, also < 30 % respektive < 50 % für Cadmium und Blei.

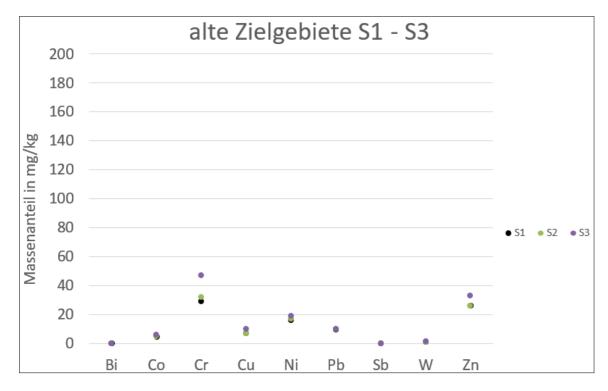
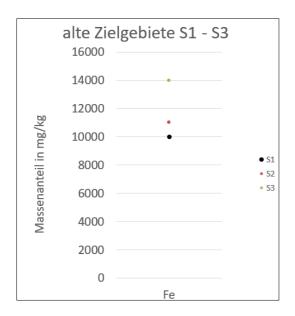



Abbildung 16: : Resultate alte Zielgebiete S1 – S3 für Elemente Bi – Zn.

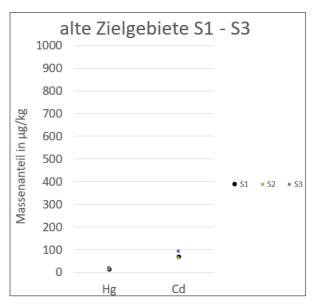


Abbildung 17: Resultate S1 – S3 für Eisen

Abbildung 18: Resultate S1 – S3 für Quecksilber und Cadmium

6 Schlussfolgerungen und weiteres Vorgehen

Durch die gewählte Probenametechnik mittels Multi-Inkrement-Beprobung konnte eine hohe Reproduzierbarkeit der Probenahme erreicht werden.

Bei den Analysen aller Wasser- und Sedimentproben konnten keine Explosivstoffe nachgewiesen werden.

Sämtliche im Wasser gemessenen Konzentrationen befinden sich auf dem Niveau der beprobten Referenzstandorte und liegen deutlich unter den anwendbaren Grenzwerten der Gewässerschutzverordnung.

Die Interpretation dieser Analysenresultate und das weitere Vorgehen werden in einem nächsten Schritt mit den betroffenen Kantonen Waadt, Freiburg und Neuenburg, dem BAFU sowie Pro Natura und dem Verein Grand Cariçaie besprochen.

7 Freigabe

Thun, 23. September 2021

armasuisse

Wissenschaft und Technologie

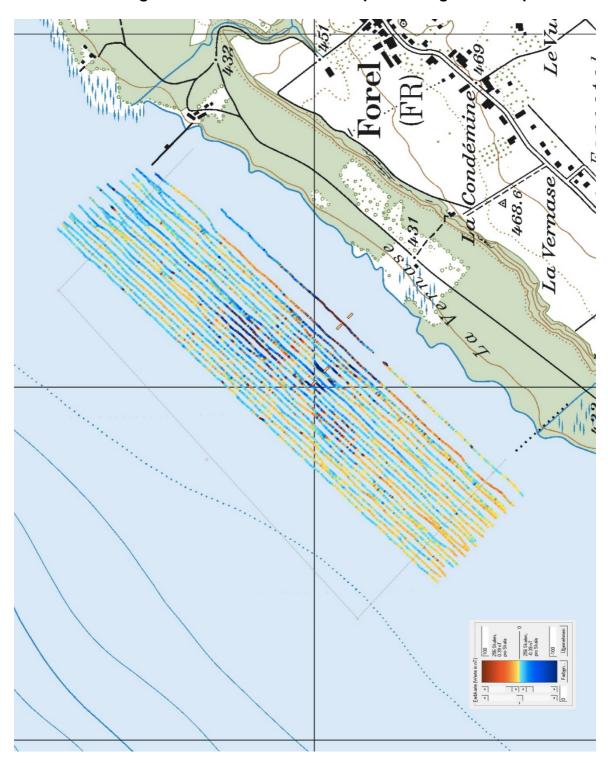
Patrick Folly

Leiter FB Munitionsüberwachung und

Explosivstoffe

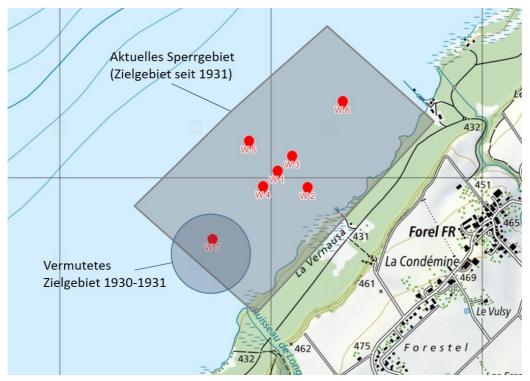
armasuisse

Wissenschaft und Technologie

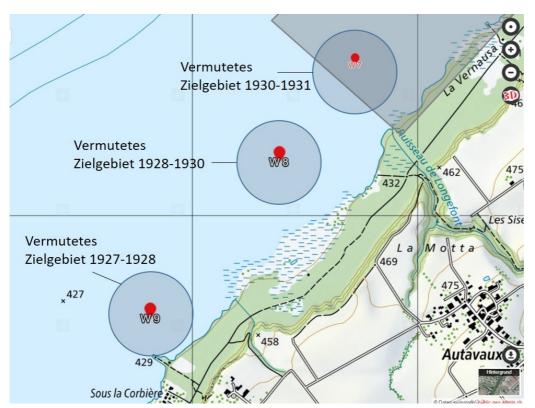

Jörg Mathieu

Sandie Pasche

FB Munitionsüberwachung und Explosivstoffe


8 Anhang

8.1 Karte Magnetometeranomalien im Hauptfeld Fliegerschiessplatz Forel

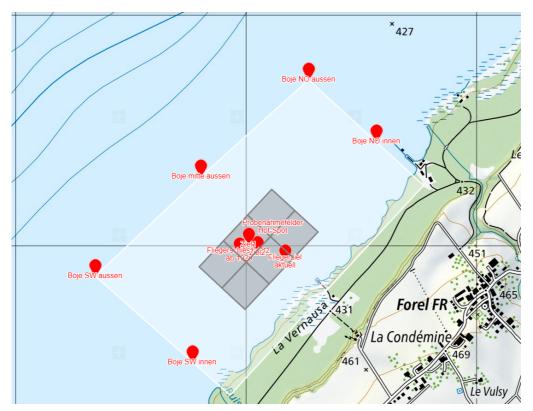


Raster Massstab entspricht 1 km. Quelle der Hintergrundkarte: Bundesamt für Landestopografie

8.2 Probenahmepositionen Wasser

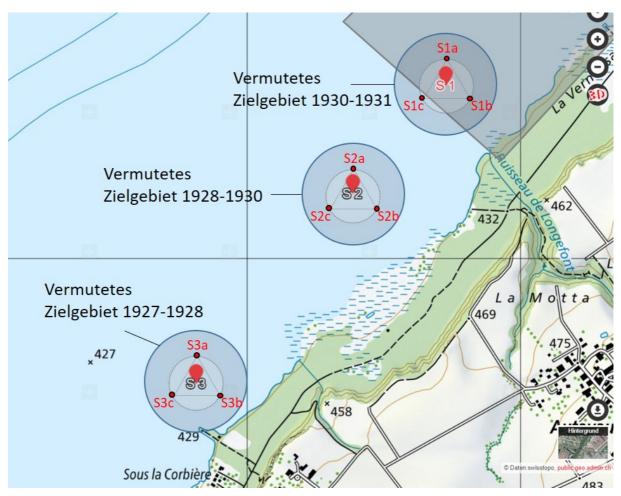
Probenahmepositionen Wasser im Sperrgebiet

Probenahmepositionen Wasser in den ehemaligen Zielgebieten 1927-1928 und 1928-1930


Bezeichnung	Beschreibung	Koordinaten
W 1	Zentrum Sperrgebiet zwischen den beiden betonierten Fliegerzielen	557'028,191'987
W 2	Bei aktuellen Fliegerzielen	557'171,191'910
W 3	100 m NO vom Zentrum	557'097,192'058
W 4	100 m SW vom Zentrum	556'960,191'913
W 5	200 m NW vom Zentrum	556'892,192'129
W 6	450 m NO vom Zentrum	557'336,192'315
W 7	450 m SW vom Zentrum (liegt auch im Bereich vermutetes Zielgebiet 1930-1931)	556'721,191'658
W 8	Vermutetes Zielgebiet 1928-1930	556'384,191'234
W 9	Vermutetes Zielgebiet 1927-1928	555'811,190'537

Referenzstandorte Wasserproben im Flachwasser

Bezeichnung	Koordinaten
Ref 1 W	561'615,196'028
Ref 2 W	551'930,187'827


8.3 Probenahmepositionen Sediment

Probenahmeflächen für die 6 Inkremente pro Primärprobe Sediment im Gebiet Hot Spot

Bezeichnung	Koordinaten
Hot Spot Fläche 1 154x136m	Eckpunkte [Nord/Ost/Süd/West]: 557'111,192'244 / 557'211,192'152 / 557'105,192'039 / 557'006,192'132 Zentrum: 557'109,192'141
Hot Spot Fläche 2 154x136m	Eckpunkte [Nord/Ost/Süd/West]: 557'211,192'152 / 557'312,192'059 / 557'205,191'946 / 557'105,192'039 Zentrum: 557'208,192'049
191987 Hot Spot Fläche 3 154x136m	Eckpunkte [Nord/Ost/Süd/West]: 557'006,192'132/ 557'105,192'039 / 557'000,191'928 / 556'902,192'020 Zentrum: 557'003,192'030
Hot Spot Fläche 4 154x136m	Eckpunkte [Nord/Ost/Süd/West]: 557'105,192'039 / 557'205,191'946 / 557'100,191'834 / 557'000,191'928 Zentrum: 557'102,191'937
Hot Spot Fläche 5 154x136m	Eckpunkte [Nord/Ost/Süd/West]: 556'902,192'020 / 557'000,191'928 / 556'895,191'816 / 556'796,191'908 Zentrum: 556'899,191'917
Hot Spot Fläche 6 154x136m	Eckpunkte [Nord/Ost/Süd/West]: 557'000,191'928 / 557'100,191'834 / 556'995,191'723 / 556'895,191'816 Zentrum: 556'998,191'824

Referenz Nr. Acta Nova: ar-D-EB643401/1746 Seite 30 / 49

Probenahmepositionen Sedimentkerne in den ehemaligen Zielgebieten

Bezeichnung	Koordinaten
Zielgebiet S 1	Zentrum: 556'724,191'628
1930-1931	S1a: 556'724,191'731 / S1b: 556'812,191'583 / S1c: 556'636,191'583
Zielgebiet S 2	Zentrum: 556'384,191'234
1928-1930	S2a: 556'384,191'333 / S2b: 556'477,191'176 / S2c: 556'296,191'176
Zielgebiet S 3	Zentrum: 555'811,190'537
1927-1928	S3a: 555'811,190'638 / S3b: 555'898,190'488 / S3c: 555'725,190'488

Die Referenzstandorte der Probenahme Sedimente entsprechen denjenigen der Probenahme Wasser

Bezeichnung	Koordinaten
Ref 1 S	561'615,196'028
Ref 2 S	551'930,187'827

8.4 Schusszahlen und Massenbilanz

True de manuellien	No. Cabel	Name of the last	Ale and an ale	240" of /00	Maco con	Г	Manage totals	Manage totals	Mono	Manage and Allin	- Conjugation of the Conjugation
iype de mamion	<u> </u>	pièce de munitions	e D	o % de Tate [nombre d'unités]	masse sans produit explosif:	produit explosif:raté			produit non explosif au	explosif au total [kg]	COLLINATION
		[kg/unité]	d'unités]		coup réussi [kg/ unité]	[kg/unité]			total [kg]		
450 kg U Bb 68	sid_36	422	20	2	422	422	7596	844	8,440	-	observée par KAMR
225kg UBb 81	96	222	20	2	222	222	3996	444	4.440	-	HU
FI-B. 50 kg	78	52	20	4	31	25	1426	207	1'550	83	évenement en 1937 = estimation W+T
50 kg FI-U-B.	adaptée de 78	51	2,000	400	41	15	188600	20,400	205'000	4,000	LW
50 kg FI-BI-B.	adaptée de 78	51	5,000	400	51	19	234600	20,400	255'000	-	LW
35 kg UBb 67	26	30	12	1	30	08	334	30	365	0.02	ΓM
25 kg UBb 66	86	21	17'000	1360	21	21	329336	28'665	357'974	22	HU + LW
25 kg UBb 80	86	21	17'000	1360	21	21	329336	28,665	357.974	22	ΠH
12 kg U-FI-B. Alu	66	12	20,000	1,600	12	12	218702	19'380	237720	898	LW
12 kg U-FI-B. Stahl	100	12	20,000	1,600	12	12	224590	19'892	244'120	898	LW
7 kg UBb (Beton)	101	2	240'000	19'200	7	2	1478477	128'563	1'607'040	-	HU
4 kg Fiz UBb 81	102	4	2,000	400	4	4	18455	1,605	20,060	-	LW
SS 11 Type B1 Exercice	104	24	200	40	24	54	11256	979	12'235	-	HU
20 mm Flz Kan 76 U Pat	106	0.1	71'745	5740	0.1	0.1	7040	612	7'652	-	LW
20 mm HS-K. 48 Mi.Br.G. MZ	16_bis	0.1	7.077	566	0.1	0.1	697	69	757	8	HU
20mm Fiz Kan 92 UPat 97	107	0.1	71745	5740	0.1	1.0	6733	585	7318	-	LW
30 mm Flz Kan 58 UG	adaptée de 109	0.2	20,000	4,000	0.2	0.2	11334	986	12'320	-	LW
30 mm Flz Kan 58 u 65 UG	109	0.2	20,000	4,000	0.2	0.2	11334	986	12'320	-	LW
30 mm Flugzeug Kanone 65 UG	adaptée de 109	0.5	20,000	4,000	0.2	0.2	11334	986	12'320	-	LW
8 cm U Rak	110	0.1	83,000	6,640	7.9	0.8	600953	52'987	653'210	082	HU
20 mm FI-K. 38 FM-K.	111	8	100'000	8,000	0.1	0.1	10884	1,000	11'830	54	LW
6.5 kg U FI Bb	115	9	40,000	3,200	6.2	6.3	226725	20,296	246'440	280	LW
20mm FFK 37	113	0.1	5,000	400	0.1	0.1	592	54	644	3	LW
127 mm5in MK32 Züni	114	33	5	1	26	33	103	33	129	2	observée par KAMR
300 kg UBb 79	112	300	2	-	300	300	009	-	009	-	observée par KAMIR doc KAMIR
							Masse totale	Masse totale	Masse	Masse produit	Mass totale [t]
							des coups réussis [t]	des coups ratés [t]	produit non explosif au total [t]	explosif au total [t]	
			Total en tonne =				3935	349	4277	6.2	4284

8.5 Schadstoffbilanz

										யி	Explosivstoffe	toffe												
					Ladun	gsspre	ngstoffe	Ladungs sprengstoffe und Treibladungs pulver	dungs pul ^h	ver		•	Pyrotechnika	hnika				Zünd- r	und Anzí	Zünd- und Anzündsätze	<i>a</i> -			
				TNT	1811	Standoutild	Nitropenta	Hexogen		Schwarz- Pulver		Barium -nitrat	-peroxid -carbonat	pyrotech. Aluminium		bissiəla		Hg-Fulminat		-III-nomitnA bitlue	4-21	Kalium -chlorat + -perchlorat	tot olava	tot olqx3
Kaliber und Mun-Art.	Nr. Erhbl	8% Bindgängerra te	Schuszahl	[g] Stk	[kg] tot	[9] Stk	[kg] [[9] Stk [kg	[kg] tot	[9] Stk	[kg] tot	[g] Stk	[kg] tot	[9] [k Stk t	[kg] [g tot St	[g] [kg] Stk tot	[6]	Stk [kg]	tot	[g] [kg Stk to	[kg] [g] S tot	Stk [kg] tot		[kg] tot
450 kg U Bb 68	95_bis	2	20	1											+	+	<u> </u>	ŀ	+	-	'	+		Τ.
225kg UBb 81	96	2				Ī.					,		١,	 	<u> </u>	<u> </u>	'	Ė	 	 	<u>'</u>	Ë		Ι,
H-B. 50 kg	78	4	1 20	20'758	83	,		-						-	Ė		'	Ė	Ė			Ė		83
50 kg Ft-U-B.	adaptée de 78	400	2000	,	,	,		,	-	10,000	4,000		-	-	_	_	-	Ŀ	Ė	Ė		Ė	4,	4,000
50 kg FI-BI-B.	adaptée de 78	400	2000	,	-	,	-	,	-			-	-	-	Ë	Ľ	-		_	_		_		
35 kg UBb 67	26	1	12	1	-		-	-	-	20	0.02	-	-	-	Ė	_	-	Ė	Ė	Ë	-	Ĺ		0
25 kg UBb 66	86	1360	17000	,		,	Ļ	,		20	27	,	ļ .	-	Ë	<u> </u>	'	Ė	H	Ë	<u>'</u>	Ļ		27
25 kg UBb 80	86	1360	17000	1	-		-	-	-	20	27	-	-		Ė	_	-	Ė	Ė	Ë	-	Ĺ		27
12 kg U-FI-B. Alu	66	1600	20000		-	2	7	-	-	225	360	-	-	-		0.2	0.3		_	Ë	-			363
12 kg U-FI-B. Stahl	100	1600	20000		-	2	7	-		225	360	-	-	-		0.2	0.3	Ë	H	H	-	Ľ		363
7 kg UBb (Beton)	101	19200	240000		-		-	-	-	-	-	-	-	-	Ė	_	-		_	Ë	-			
4 kg Flz UBb 81	102	400	2000		-		-			-	-	-	-	-	_	-	-		Ĥ		-	Ĺ		
SS 11 Type B1 Exercice	104	40	900		-	,	-	-		-	-	-	-	-	H	-	-	H	H	H	-	H		
20 mm Flz Kan 76 U Pat	106	5740	71745		-		-	-	-	-	-	-	-	-	Ė	-	-		-	Ė	-			
20 mm HS-K. 48 Mi.Br.G. MZ	16_bis	999	7077	7.4	4.2	0.3	0.2	-	-	-	-	2	1	4	2 0.	0.04 0.	0.02		H		-	H		8
20mm Flz Kan 92 UPat 97	107	5740	71745		•			-	-	-	-			-	_		-		$\ddot{\dashv}$	_		\dashv		
30 mm Flz Kan 58 UG	adaptée de 109	4000	50000	1	-	,	-	,	-	-	-		-	-	-		_	_		-	-	_		-
30 mm Flz Kan 58 u 65 UG	109	4000	50000	-	•			-	-	-	-		-	-	_		_		$\ddot{+}$			\dashv		
30 mm Flugzeug Kanone 65 UG	adaptée de 109	4000	50000	-			-	-	-	-	-		-	-	_	_	_	_			-	-		
20 mm FHK. 38 FM-K.	111	8000	100000	6.3	50.4	0.3	2	-	-	0.02	0.15	-		-		0.1	1 0.004		0.03 0.	0.02 0.	0.13 0.0	0.02 0.	0.16	54
8 cm U Rak	110	6640	83000	-		-	,		-	110	730	,	-	-	_		_	_	╣		-	\dashv		730
6.5 kg U FI Bb	115	3200	40000	-	-	1	4	-	-	180	576		-	-		0.2	1 -		$\ddot{+}$			\dashv		580
20mm FFK 37	113	400	5000	3	1.2	3	1	-	-	0.02	0.01		-	-	0.	0.04 0.	0.02 0.0	0.01 0.	0.00	0.04 0.	0.02 0.0	0.05 0.	0.02	3
127 mm 5in MK32 Züni	114	-	5	2′686	2.7	-	-	4,046	4	-	-			i	\dashv	\dashv	_	_	\dashv	_	_	\dashv		7
300 kg UBb 79	112	0	2		,				-	,		,		<u>'</u>	-		'	_		_	,	_		,
TOTAL [kg]:					142		12		4		6,081		1		7		7	0	0.04	o	0.14	o	0.18 6	6,245

Seite 33 / 49

[g] Stk [kg] tot [g] [kg] [g] Stk [kg] tot [g]	[kg] tot [g] Stk [kg]	g] Stk [kg] tot [g] Stk	[kg] tot [g]	[g] Stk		Stk [kg] tot [g] Stk [kg] tot [g] St			[6] 101 [64] Mag 101 [65] Mag 10
Stk tot Stk tot	tot		į					If the least two fields are field two fields are field two fields are field.	If I wo field was fell you feel you feel was fee
30 1					170'000 3'400 -	170'000 3'400 -	'n	251'913 5'038 50 1 170'000 3'	5'038 50 1 170'000 3'
					43'500 870 -	200	- 43′500	3'413 7'845 157 43'500	7'845 157 43'500
0.02		5 0.3 -		-				30'995 1'550	
0.02		5 25 -		-	10'000 50'000 -	000	000	000	154'975 10'000 50
0.02		5 25 -			20'000 100'000 -	000	000	000	154'975 20'000
31 0.4 0.02	340	8 0 28'350	22	1,800	- 1,800	1'800	1,800	103 1 1'800	1 1
31 527 0.02		8 136 -	30,600	1,800	1'800	1,800	1,800	18'863 320'676 1'800	320'676 1'
31 527 (8 136 -	30,600	1,800	1,800	1,800	1,800	18'863 320'676 1'800	320′676
	- 100 2,000	100 2'000 -		,			620 12'400	9416 188'320 620 12'400	
	- 100 2,000	100 2'000 -	,					10'356 207'120	
			-	٠	5'710 1'370'400 -	710 1'370'	710 1'370'	710 1'370'	236'640 5'710 1'370'
			-				12 60		19,950
			-	•			20'000 10'000	- 20'000 10'000	40 500 20'000 10'000
9 660 1 65	9	- 0.08	-	•			629 6		6'314 9
7 50 7			-	•				100 708	
0.01		4 287 -	-	•			7 502		6,529
	1 44 11 550	1	-	1	22 1'100 -	1	1	2,170 - 22 1	8'500 43 2'170 22 1
	1 44 11 550	1	-	1	22 1'100 -			2′170 22	8'500 43 2'170 22
	1 44 11 550	1	-	1	22 1'100 -	1,	1,	2'170 22 1'	8/500 43 2/170 22 1/
2 200 0.001 0.1 0.	1 80	9 930 1	-	1				100 10'000	
70 5'810			300 24'900	3(. 3		8 - - - - -	7500 622'500 3	622′500
0.04	8 320	13 520 8		•		1,395 55'800	55,	55,	189'800 - 1'395 55'
5 24 0.50 2.5 0.01		3 13 -	-	•				121 605	
							6,000 30		000,9 66
5145 10			•	•			129'880 260		315 129'880
2000/2	010/1	620/3	00,133		1,527,970	,	55'8M	2,475,703 30'599 55'800 1'527'970	,1 U8,350 665,0E

8.6 Probenahmepositionen und Geometrie Sedimente

8.4.21 / OSJA

Wasserstand Neuenburgersee (29.-31.3.21) ca. 429.4 m.ü.M.

		Pt.	Koordinata N	Koordinata O	CH Koordinaten	Seespiegel		Sedimentkerr	1	Datum
		1 (.	Koorumate N	Koordinate O	Ch Koorumaten	Tiefe / m	Ø/cm	Höhe / cm	Volumen / L	Datum
	а	S00704	46°52.770'	006°52.565	557119/192196	2	5.3	36-39	0.8	
HS-1	b	S00705	46°52.742	006°52.535	557080/192145	2.1	5.3	50	1.1	29.03.2021
	С	S00706	46°52.718	006°52.566	557119/192100	1.8	5.3	45	1.0	
	а	S00707	46°52.709	006°52.593	557153/192083	1.7	5.3	46	1.0	
HS-2	b	S00708	46°52.702	006°52.655	557232/192070	1	5.3	47	1.0	29.03.2021
	С	S00709	46°52.695	006°52.569	557123/192057	1.4	10	26	2.0	
	а	S00710	46°52.707	006°52.497	557031/192080	1.5	5.3	36	0.8	
HS-3	b	S00711	46°52.674	006°52.522	557063/192019	1.1	5.3	35	0.8	29.03.2021
	С	S00712	46°52.668	006°52.455	556977/192009	1.6	5.3	48	1.1	
	а	S00713	46°52.633	006°52.520	557060/191943	1.4	5.3	51	1.1	
HS-4	b	S00714	46°52.605	006°52.507	557043/191891	1.1	10	20	1.6	29.03.2021
	С	S00715	46°52.639	006°52.632	557202/191953	1	10	15	1.2	
	а	S00716	46°52.629	006°52.433	556949/191936	1.6	5.3	47	1.0	
HS-5	b	S00717	46°52.632	006°52.362	556859/191943	1.7	5.3	50	1.1	29.03.2021
	С	S00718	46°52.613	006°52.363	556860/191907	1.6	5.3	37	0.8	
***************************************	а	S00721	46°52.558	006°52.415	556925/191805	1.3	5.3	41	0.9	
HS-6	b	S00722	46°52.540	006°52.487	557016/191771	1.3	10	26	2.0	29.03.2021
	С	500723	46°52.592	006°52.505	557040/191867	1.2	5.3	54	1.2	
	Zentrum				556724/191628	1.3	5.3	45	1.0	
	а				556724/191731	1.4	5.3	48	1.1	
S1	b				556812/191583	1.6	5.3	58	1.3	31.03.2021
	С				556636/191583	1.5	5.3	56	1.2	
	Zentrum				556384/191234	1.4	5.3	50	1.1	
	а				556384/191333	1.6	5.3	49	1.1	
S2	b				556477/191176	1.8	5.3	55	1.2	30.03.2021
	С				556296/191176	1.8	5.3	45	1.0	
	Zentrum		••••••	***************************************	555811/190537	1.8	5.3	36	0.8	
	а				555811/190638	2.1	5.3	52	1.1	
S3	b				555898/190488	1.4	10	26	2.0	31.03.2021
	C				555725/190488	1.4	5.3	40	0.9	
	1				333723/130400	1.6	5.3	54	1.2	
Ref1-S-a	2	S00725	46°54.854	006°56.078	561606/196027	1.4	5.3	62	1.4	29.03.2021
	3	300723	40 34.034	000 30.070	301000/130027	1.4	5.3	50	1.4	25.05.2021
	1					1.6	5.3	50	1.1	
Ref1-S-b	2	S00727	46°54.853	006°56.092	561624/196025	1.6	5.3	53	1.2	29.03.2021
	3	300727	40 34.033	000 30.032	301024/130023	1.6	5.3	35	0.8	25.05.2021
000000000000000000000000000000000000000	1				***************************************	1.6	5.3	50	1.1	
Ref1-S-c	2	S00729	46°54.860	006°56.085	561615/196038	1.6	5.3	55	1.2	29.03.2021
	3	300723	40 54.000	000 30.003	301013/130030	1.6	5.3	48	1.1	25.05.2021
	1					1.4	5.3	48	1.1	
Ref2-S-a	2	S00730	46°50.394	006°48.504	551924/187834	1.4	5.3	40	0.9	29.03.2021
	3]	10 30.334	000 40.504	33132-1/10/034	1.4	5.3	46	1.0	_5.05.2021
	1					1.5	5.3	42	0.9	
Ref2-S-b	2	S00731	46°50.386	006°48.508	551929/187819	1.5	5.3	48	1.1	29.03.2021
	3] 300/31	70 30.380	000 40.308	331323/10/013	1.5	5.3	43	0.9	23.03.2021
	1					1.5	5.3	50	1.1	
Ref2-S-c	2	S00732	46°50.396	006°48.516	551939/187837	1.5		48	1.1	29.03.2021
	3] 300/32	+0 30.330	500 46.510	331333/10/03/		5.3	48		23.03.2021
	9		L	L		1.5	5.3	49	1.1	L

8.7 Resultate Explosivstoff-Analytik Wasserproben Bachema

Bachema AG Analytische Laboratorier

email-Bericht (z. Hd.: Herr Mathieu, joerg.mathieu@ar.admin.ch)

(z. Hd.: Herr von Gunten, cedric.vonGunten@babs.admin.ch)

Objekt

Wasserproben, Forel FR

Auftrags-Nr. Bachema

202103549

Auftraggeber Rechnungsadresse Rechnung zur Visierung Bericht an Bericht per e-mail an Bericht per e-mail an Labor Spiez, Sektion Physik, 3700 Spiez Generalsekretariat VBS, Maulbeerstrasse 9, 3003 Bern Generalsekretariat VBS, Maulbeerstrasse 9, 3003 Bern armasuisse, J. Mathieu, Feuerwerkerstrasse 39, 3602 Thun armasuisse, J. Mathieu, joerg.mathieu@ar.admin.ch Labor Spiez, C. von Gunten, cedric.vonGunten@babs.admin.ch

Probenübersicht

Bachen	na-Nr.	Probenbezeichnung	Probenahme / Eingang Labor
15089	W	W1	/ 08.04.21
15090	W	W2	/ 08.04.21
15091	W	W3	/ 08.04.21
15092	W	W4	/ 08.04.21
15093	W	W5	/ 08.04.21
15094	W	W6	/ 08.04.21
15095	W	W7	/ 08.04.21
15096	W	W8	/ 08.04.21
15097	W	W9	/ 08.04.21
15098	W	Ref1-W	/ 08.04.21
15099	W	Ref2-W	/ 08.04.21

Freundliche Grüsse BACHEMA AG

S. Ruckstuhl, Dr. sc. nat. / Dipl. Umwelt-Natw. ETH

E. Altay, Administration

Tel.: 044 738 39 00

Wasserproben, Forel FR Labor Spiez 202103549

						Referenzwert
Probenbezeichnung		W1	W2	W3	W4	
Proben-Nr. Bachema Tag der Probenahme		15089	15090	15091	15092	
Sprengstoffe				:		
1,3-Dinitrobenzol	μg/L	<0.1	<0.1	<0.1	<0.1	
1,3,5-Trinitrobenzol	μg/L	<0.1	<0.1	<0.1	<0.1	
2,4-Dinitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,6-Dinitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,4,6-Trinitrotoluol (TNT)	µg/L	<0.1	<0.1	<0.1	<0.1	
2-Amino-4,6-Dinitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
4-Amino-2,6-Dinitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,4-Diamino-6-Nitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,6-Diamino-4-Nitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
Hexogen (RDX)	μg/L	<0.1	<0.1	<0.1	<0.1	
Octogen (HMX)	µg/L	<0.1	<0.1	<0.1	<0.1	
PETN	µg/L	<0.1	<0.1	<0.1	<0.1	
Nitroglycerin	μg/L	<0.1	<0.1	<0.1	<0.1	
Diphenylamin	μg/L	<0.1	<0.1	<0.1	<0.1	
N-Nitrosodiphenylamin	μg/L	<0.1	<0.1	<0.1	<0.1	

						Referenzwert
Probenbezeichnung		W5	W6	W7	W8	
Proben-Nr. Bachema Tag der Probenahme		15093	15094	15095	15096	
Sprengstoffe						
1,3-Dinitrobenzol	µg/L	<0.1	<0.1	<0.1	<0.1	
1,3,5-Trinitrobenzol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,4-Dinitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,6-Dinitrotoluol	µg/L	<0.1	<0.1	<0.1	<0.1	
2,4,6-Trinitrotoluol (TNT)	µg/L	<0.1	<0.1	<0.1	<0.1	
2-Amino-4,6-Dinitrotoluol	μg/L	<0.1	<0.1	<0.1	<0.1	
4-Amin o-2,6-Dinitrotolu ol	μg/L	<0.1	<0.1	<0.1	<0.1	
2,4-Diamino-6-Nitrotoluol	μg/L	<0.1	<0.1	<0.1	<0.1	
2,6-Diamino-4-Nitrotoluol	μg/L	<0.1	<0.1	<0.1	<0.1	
Hexogen (RDX)	μg/L	<0.1	<0.1	<0.1	<0.1	
Octogen (HMX)	µg/L	<0.1	<0.1	<0.1	<0.1	
PETN	μg/L	<0.1	<0.1	<0.1	<0.1	
Nitroglycerin	μg/L	<0.1	<0.1	<0.1	<0.1	
Diphenylamin	μg/L	<0.1	<0.1	<0.1	<0.1	
N-Nitrosodiphenylamin	µg/L	<0.1	<0.1	<0.1	<0.1	

Wasserproben, Forel FR Labor Spiez 202103549

Objekt Auftraggeber Auftrags-Nr. Bachema

					Referenzwert
Probenbezeichnung		W9	Ref1-W	Ref2-W	
Proben-Nr. Bachema Tag der Probenahme		15097	15098	15099	
Sprengstoffe		,		,	
1,3-Dinitrobenzol	μg/L	<0.1	<0.1	<0.1	
1,3,5-Trinitrobenzol	μg/L	<0.1	<0.1	<0.1	
2,4-Dinitrotoluol	μg/L	<0.1	<0.1	<0.1	
2,6-Dinitrotoluol	μg/L	<0.1	<0.1	<0.1	
2,4,6-Trinitrotoluol (TNT)	μg/L	<0.1	<0.1	<0.1	
2-Amino-4,6-Dinitrotoluol	μg/L	<0.1	<0.1	<0.1	
4-Amino-2,6-Dinitrotoluol	μg/L	<0.1	<0.1	<0.1	
2,4-Diamino-6-Nitrotoluol	μg/L	<0.1	<0.1	<0.1	
2,6-Diamino-4-Nitrotoluol	μg/L	<0.1	<0.1	<0.1	
Hexogen (RDX)	μg/L	<0.1	<0.1	<0.1	
Octogen (HMX)	μg/L	<0.1	<0.1	<0.1	
PETN	μg/L	<0.1	<0.1	<0.1	
Nitroglycerin	μg/L	<0.1	<0.1	<0.1	
Diphenylamin	μg/L	<0.1	<0.1	<0.1	
N-Nitrosodiphenylamin	μg/L	<0.1	<0.1	<0.1	

202103549 / 12. April 2021 (provisorisch)

Seite 3/3

Resultate Explosivstoff-Analytik Sedimentproben Bachema 8.8

email-Bericht (z. Hd.: Herr Mathieu, joerg.mathieu@ar.admin.ch)

(z. Hd.: Herr von Gunten, Cedric.vonGunten@babs.admin.ch)

Objekt

Auftrags-Nr. Bachema

Auftraggeber Rechnungsadresse Rechnung zur Visierung Bericht an Bericht per e-mail an Bericht per e-mail an

Nr. 1, Sedimentproben, Forel (FR)

202103986

Labor Spiez, Sektion Physik, 3700 Spiez
Generalsekretariat VBS, Maulbeerstrasse 9, 3003 Bern
Generalsekretariat VBS, Maulbeerstrasse 9, 3003 Bern
Labor Spiez, J. Mathieu, Austrasse, 3700 Spiez
Labor Spiez, J. Mathieu, joerg.mathieu@ar.admin.ch
Bundesamt für Bevölkerungsschutz (BABS), C. von Gunten,
Cedric.vonGunten@babs.admin.ch

Probenübersicht

Bache	ma-Nr.	Probenbezeichnung	Probenahme / Eingang Labor
16776	F	HS a	/ 17.04.21
16777	F	HS b	/ 17.04.21
16778	F	HS c	/ 17.04.21
16779	F	S1	/ 17.04.21
16780	F	S2	/ 17.04.21
16781	F	S3	/ 17.04.21
16782	F	Ref1-S a	/ 17.04.21
16783	F	Ref1-S b	/ 17.04.21
16784	F	Ref1-S c	/ 17.04.21
16785	F	Ref2-S a	/ 17.04.21
16786	F	Ref2-S b	/ 17.04.21
16787	F	Ref2-S c	/ 17.04.21

Freundliche Grüsse BACHEMA AG

S. Ruckstuhl, Dr. sc. nat. / Dipl. Umwelt-Natw. ETH

L. Wirz, Administration Tel.: 044 738 39 00

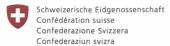
202103986 / 22. April 2021 (provisorisch)

Seite 1/4

Nr. 1, Sedimentproben, Forel (FR) Labor Spiez 202103986

						Referenzwert
Probenbezeichnung		HS a	HS b	HS c	Ref1-Sa	
Proben-Nr. Bachema Tag der Probenahme		16776	16777	16778	16782	
Probenparameter			,	i.		
Angelieferte Probemenge	kg	3.8	4.0	5.2	1.8	
Allgemeine und anorganisch	e Parameter					
Kohlenstoff org. (TOC)	% v. TS C	0.3	0.4	0.4	1.0	
Sprengstoffe						•
1,3-Dinitrobenzol (TS)	μg/kg TS	<1	<1	<1	<1	
1,3,5-Trinitrobenzol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4,6-Trinitrotoluol (TNT) (TS)	μg/kg TS	<1	<1	<1	<1	
2-Amino-4,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
4-Amino-2,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4-Diamino-6-Nitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,6-Diamino-4-Nitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
Hexogen (RDX) (TS)	μg/kg TS	<3	<3	<3	<3	
Octogen (HMX) (TS)	μg/kg TS	<10	<10	<10	<10	
PETN (TS)	μg/kg TS	<1	<1	<1	<1	
Nitroglycerin (TS)	μg/kg TS	<1	< 1	<1	<1	
Diphenylamin (TS)	μg/kg TS	<1	<1	<1	<1	
N-Nitrosodiphenylamin (TS)	μg/kg TS	<1	<1	<1	<1	

Nr. 1, Sedimentproben, Forel (FR) Labor Spiez 202103986


						Referenzwert
Probenbezeichnung		Ref1-S b	Ref1-S c	Ref2-S a	Ref2-S b	
Proben-Nr. Bachema Tag der Probenahme		16783	16784	16785	16786	
Probenparameter				•		*
Angelieferte Probemenge	kg	1.5	1.6	2.1	2.7	
Allgemeine und anorganisch	Parameter	"				
Kohlenstoff org. (TOC)	% v. TS C	1.0	1.0	0.2	0.3	
Sprengstoffe						
1,3-Dinitrobenzol (TS)	μg/kg TS	<1	<1	<1	<1	
1,3,5-Trinitrobenzol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4,6-Trinitrotoluol (TNT) (TS)	μg/kg TS	<1	<1	<1	<1	
2-Amino-4,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
4-Amino-2,6-Dinitrotoluol (TS)	µg/kg TS	<1	<1	<1	<1	
2,4-Diamino-6-Nitrotoluol (TS)	µg/kg TS	<1	<1	<1	<1	
2,6-Diamino-4-Nitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
Hexogen (RDX) (TS)	μg/kg TS	<3	<3	<3	<3	
Octogen (HMX) (TS)	μg/kg TS	<10	<10	<10	<10	
PETN (TS)	μg/kg TS	<1	<1	<1	<1	
Nitroglycerin (TS)	μg/kg TS	<1	<1	<1	<1	
Diphenylamin (TS)	μg/kg TS	<1	<1	<1	<1	
N-Nitrosodiphenylamin (TS)	μg/kg TS	<1	<1	<1	<1	

Nr. 1, Sedimentproben, Forel (FR) Labor Spiez 202103986

						Referenzwert
Probenbezeichnung		Ref2-S c	S1	S2	S 3	
Proben-Nr. Bachema Tag der Probenahme		16787	16779	16780	16781	
Probenparameter				,		*
Angelieferte Probemenge	kg	2.4	2.9	2.9	3.1	
Allgemeine und anorganische	e Parameter					·
Kohlenstoff org. (TOC)	% v. TS C	0.2	0.5	0.3	0.3	
Sprengstoffe						
1,3-Dinitrobenzol (TS)	μg/kg TS	<1	<1	<1	<1	Ĭ
1,3,5-Trinitrobenzol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4,6-Trinitrotoluol (TNT) (TS)	μg/kg TS	<1	<1	<1	<1	
2-Amino-4,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
4-Amino-2,6-Dinitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,4-Diamino-6-Nitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
2,6-Diamino-4-Nitrotoluol (TS)	μg/kg TS	<1	<1	<1	<1	
Hexogen (RDX) (TS)	μg/kg TS	<3	<3	<3	<3	
Octogen (HMX) (TS)	μg/kg TS	<10	<10	<10	<10	
PETN (TS)	μg/kg TS	<1	<1	<1	<1	
Nitroglycerin (TS)	μg/kg TS	<1	<1	<1	<1	
Diphenylamin (TS)	μg/kg TS	<1	<1	<1	<1	
N-Nitrosodiphenylamin (TS)	μg/kg TS	<1	<1	<1	<1	

8.9 Resultate Schwermetall-Analytik Wasser- und Sedimentproben Labor Spiez

Eidgenössisches Departement für Verteidigung Bevölkerungsschutz und Sport VBS

Bundesamt für Bevölkerungsschutz BABS LABOR SPIEZ

Referenz/Aktenzeichen: VGCE / BABS-313-1/15 Spiez, 30.04.2021

Prüfstelle für die Bestimmung von Radionukliden und Elementanalytik.

Prüfbericht Nr. NUC-21-010

Auftraggeber

GS VBS Raum und Umwelt

Auftrac

Bestimmung der munitionsrelevanten Metalle in Überstandswasser sowie Sedimentproben des Spl Forel im Neuenburgersee.

Zusammenfassung

Die Probenahme erfolgte zusammen mit der armasuisse und der KAMIR. Die Wasser- sowie die Sedimentproben wurden, nach erfolgter Probenaufarbeitung, mittels ICP-Massenspektrometrie, ICP-Optischer Emissionsspektrometrie, Atomfluoreszenzspektrometrie und Atomabsorptionsspektrometrie auf die Metallkonzentrationen hin analysiert. Die Resultate sind im Kapitel 10 des vorliegenden Berichts zusammengestellt.

Nukleatchemie

Dr. Mario Burger Chef Fachbereich Nuklearchemie Nuklearchemie

Marc Stauffer Prüfstellenleiter STS 0028 Nuklearchemie

Cédric von Gunten Messgruppenleiter Anorganische Analytik

- Jörg Mathieu, armasuisse, Feuerwekerstrasse 39, CH-3602 Thun

- STM

- OSJA \rightarrow Dok STS 0028

- Reg.

Der Inhalt dieses Prüfberichts bezieht sich nur auf den Prüfgegenstand. Dieser Prüfbericht darf ohne Rücksprache mit dem LABOR SPIEZ nicht auszugsweise, sondern nur in vollem Text veröffentlicht werden.

Bundesamt für Bevölkerungsschutz BABS LABOR SPIEZ, 3700 Spiez Tel. +41 58 468 14 00, Fax +41 58 468 14 02 laborspiez@babs.admin.ch www.labor-spiez.ch

Aktenzeichen BABS-313-1/15

1/5

Prüfbericht Nr. NUC-21-010

1. Auftragseingang

Eingangsdatum:

12.11.2020

Art des Eingangs:

E-Mail

2. Auftragsnummer und Prüfplan

Vorschrift:

L 028 004

Auftragsnummer:

NUC-21-010

Prüfplan:

Prüfplan_NUC-21-010

3. Probenerhebung

Vorschrift:

L 028 061

Entnahme durch:

LABOR Spiez

Probenerhebungsplan:

Konzept Wasser- und Sedimentanalyse Neuenburgersee zur

Beurteilung Gefährdungspotential Munitionsrückstände

Fliegerschiessplatz "Forel" (24. Februar 2021 – Marc Stauffer, BABS Labor Spiez; Sandie

Pasche / Jörg Mathieu, armasuisse W+T)

4. Prüfgegenstand und Codierung

Probencodierung:

Vorschrift L 028 006

Originalcode	Prüfgegenstand	NUC-Code	Zu- stand	Eingang
W 1	Wasser	NUC-21-010-W1	i.O.	31.03.2021
W 2	Wasser	NUC-21-010-W2	i.O.	31.03.2021
W 3	Wasser	NUC-21-010-W3	i.O.	31.03.2021
W 4	Wasser	NUC-21-010-W4	i.O.	31.03.2021
W 5	Wasser	NUC-21-010-W5	i.O.	31.03.2021
W 6	Wasser	NUC-21-010-W6	i.O.	31.03.2021
W 7	Wasser	NUC-21-010-W7	i.O.	31.03.2021
W 8	Wasser	NUC-21-010-W8	i.O.	31.03.2021
W 9	Wasser	NUC-21-010-W9	i.O.	31.03.2021
Ref 1 W	Wasser	NUC-21-010-Ref1-W	i.O.	31.03.2021
Ref 2 W	Wasser	NUC-21-010-Ref2-W	i.O.	31.03.2021
Hot-Spot 1	Sediment	NUC-21-010-HS-a	i.O.	31.03.2021
Hot-Spot 2	Sediment	NUC-21-010-HS-b	i.O.	31.03.2021
Hot-Spot 3	Sediment	NUC-21-010-HS-c	i.O.	31.03.2021
Zielgebiet S 1	Sediment	NUC-21-010-S1	i.O.	31.03.2021
Zielgebiet S 2	Sediment	NUC-21-010-S2	i.O.	31.03.2021
Zielgebiet S 3	Sediment	NUC-21-010-S3	i.O.	31.03.2021
Ref 1 S-a	Sediment	NUC-21-010-Ref1-S-a	i.O.	31.03.2021
Ref 1 S-b	Sediment	NUC-21-010-Ref1-S-b	i.O.	31.03.2021
Ref 1 S-c	Sediment	NUC-21-010-Ref1-S-c	i.O.	31.03.2021
Ref 2 S-a	Sediment	NUC-21-010-Ref2-S-a	i.O.	31.03.2021
Ref 2 S-b	Sediment	NUC-21-010-Ref2-S-b	i.O.	31.03.2021
Ref 2 S-c	Sediment	NUC-21-010-Ref2-S-c	i.O.	31.03.2021

Prüfbericht Nr. NUC-21-010

5. Probenvorbereitung

Trocknung, Brechen	L 028 107
Totalaufschluss	L 028 105
Schwermetalle in Wasserproben	L 028 110

6. Analysenmethoden

Massenspektrometrie	L 028 135
Optische Emissions Spektrometrie	L 028 106
Direct Mercury Analyzer (AAS)	L 028 133
Atomfluoreszenz-Spektrometrie (AFS)	L 028 139

7. Prüfdatum und Prüfungsdurchführung

Datum/Zeitspanne:

31.03.2021 - 26.04.2021

SachbearbeiterIn:

OSJA/VGCE/GOSR/Lernende

8. Archivierung

Vorschrift:

L 028 004

Prüfbericht/Rohdaten:

10 Jahre

Prüfgegenstände:

Sedimente:

12 Monate

Wasser:

3 Monate

9. Messunsicherheit und Bemerkungen

Das Analysenverfahren wurde durch Mitanalysieren der Referenzmaterialien (UA-Mn-617, UA-Mn-618, NUC-Mn-041, NUC-Mn-117, NUC-Mn-130) überprüft. Aufgrund dieser Überprüfungen sind die ausgewiesenen Gehalte mit den folgenden Messunsicherheiten (p = 0.95) zu interpretieren.

Wasser:

- Feldparameter: ± 10 % - Hg, W, Bi: ± 15 % - Fe: ± 1 % - Übrige: ± 10 %

Sedimente:

- Hg: ± 20 % - Fe: ± 1 % - Übrige: ± 15 %

Experimentelle Details und analytische Unterlagen sind bei der Prüfstelle STS 0028 zugänglich.

Prüfbericht Nr. NUC-21-010

10. Resultate

10.1 Wasser

0.67 0.61 0.61 0.59 0.75 0.75 0.75 0.75 0.75 tot.rec. 1500 w(Cu) / µg/L 0.54 0.54 0.55 0.55 0.56 0.56 0.57 0.57 0.57 diss. tot.rec. w(Cr) / µg/L 20[3] diss. tot.rec. 2000 w(Co) / µg/L diss. 2000 < 0.02
 < 0.03
 < 0.02
 < 0.02
 < 0.03
 tot.rec w(Cd) / µg/L 2 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.02
 0.03
 0.04
 0.05
 0.05
 0.06 diss. tot.rec. w(Bi) / µg/L diss. Leitfähigkeit (T_{ref} = 25 °C) / µS/cm 315 316 315 315 315 317 317 317 313 pH/1 Tempera-tur / °C 8.3 8.3 8.3 8.5 8.7 8.5 10.0 10.0 Prüfgegen-stand AltV Eluati GSchV^[1]

Prüfgegen-	w(Fe)	w(Fe) / µg/L	w(Hg) / ng/L	/ ng/L	w(Ni) /	/ µg/L	w(Pb) / µg/L	/ µg/L	w(Sb)	/ hg/L	7/Brl / (M)M	/ µg/L	w(Zn) / µg/L	/ µg/L
stand	diss.	tot.rec.	diss.	tot.rec.	diss.	tot.rec.	diss.	tot.rec.	diss.	tot.rec.	diss.	tot.rec.	diss.	tot.rec.
W 1	2.3	2.8	0.066	< 0.05	0.3	0.36	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
W2	2.4	4.5	< 0.05	< 0.05	0.3	0.33	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
W3	1.5	3.3	< 0.05	< 0.05	0.36	0.35	0.13	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
W 4	1.6	2.0	0.11	< 0.05	0.32	0.48	0.39	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
W 5	1.4	1.9	0.11	< 0.05	0.32	0.47	0.39	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	0.82
W6	1.2	6.2	< 0.05	< 0.05	0.33	0.45	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.68	1.2
W 7	2.1	2.7	< 0.05	< 0.05	0.33	0.46	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
W 8	1.0	1.5	0.16	< 0.05	0.34	0.34	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
6 M	1.3	1.5	0.091	< 0.05	0.3	0.32	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
Ref 1 W	9.3	1.5	< 0.05	< 0.05	0.36	0.33	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.1	< 0.5
Ref 2 W	1.4	1.7	< 0.05	< 0.05	0.28	0.32	0.19	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5
GSchV ^[1]			10	30	5	10	1	10					5	20
AltV Eluat[1]			1000	1000	700	700	50	50	10	10			2000	5000

Prüfbericht Nr. NUC-21-010

10.2 Sediment

Die Resultate beziehen sich auf die TS 105 °C korrigierten Massenkonzentrationen des Sediments ohne metallische Fremdkörper.

Prüfgegenstand	w(Bi) / mg/kg	w(Cd) / mg/kg	w(Co) / mg/kg	w(Cr) / mg/kg	w(Cu) / mg/kg	w(Fe) / mg/kg	w(Hg) / µg/kg	w(Ni) / mg/kg	w(Pb) / mg/kg	w(Sb) / mg/kg	w(W) / mg/kg	w(Zn) / mg/kg
Hot-Spot 1	< 0.3	0.073	4.2	27	8.9	10000	12	14	9.4	<1	92.0	24
Hot-Spot 2	< 0.3	0.075	4.3	30	8.2	11000	16	15	31	< 1 × 1	0.84	26
Hot-Spot 3	< 0.3	0.17	9.6	41	n.a ^[4]	14000	21	21	23	\ \	1.0	n.a ^[4]
Zielgebiet S 1	< 0.3	0.068	4.6	29	7.0	10000	14	16	9.6	<1	0.83	26
Zielgebiet S 2	< 0.3	0.062	4.8	32	8.9	11000	15	- 17	9.6	<1	98'0	26
Zielgebiet S 3	< 0.3	0.094	9	47	10	14000	19	19	10	<1	1.1	33
Ref 1 S-a	< 0.3	0.048	2.3	15	5.4	4100	7.3	10	7.1	<1	0.41	13
Ref 1 S-b	< 0.3	0.045	2.3	16	4.9	4300	0.9	9.7	4.4	\ 1	0.47	13
Ref 1 S-c	< 0.3	0.056	2.1	13	5.0	3600	3.9	9.5	3.6	<1	0.34	12
Ref 2 S-a	< 0.3	< 0.04	3.3	25	3.8	8400	6.5	12	9.0	<1	0.83	20
Ref 2 S-b	< 0.3	0.049	3.7	28	4.1	9200	7.3	14	9.2	< 1 × 1	0.70	21
Ref 2 S-c	< 0.3	0.041	3.6	27	4.2	0006	7.0	13	8.8	<1	0.71	20
VVEA unverschmutzt ^[1]		1		90	40		200	90	90			150
AltIV Anh.3; 2 ^[1]		20		100[3]	1000		2000	1000	1000	50		2000
VBBo Richtwert ^[1]		8.0		20	40		200	50	50			150

[1] informativ, die anzuwendenden Grenzwerte sind zum Zeitpunkt der Berichterstattung nicht definiert

[2] als Cr-III und Cr-VI

[3] als Cr-VI

[4] nicht ausgewiesen

8.10 Analysenparameter und analytische Bestimmungsgrenzen

Laboratorium	Prüfgegenstand	Parameter	BG, Wasser	BG, Feststoff
Bachema AG	Wasser,	1,3-Dinitrobenzol	0.1 μg/l	1-5 μg/kg
	Sediment inkl. Porenwasser*	1,3,5-Trinitrobenzol	0.1 μg/l	5 μg/kg
		2,4-Dinitrotoluol	0.1 μg/l	1-5 μg/kg
		2,6-Dinitrotoluol	0.1 μg/l	1-5 μg/kg
		2,4,6-Trinitrotoluol (TNT)	0.1 μg/l	1-5 μg/kg
		2-Amino-4,6-Dinitrotoluol	0.1 μg/l	1-5 μg/kg
		4-Amino-2,6-Dinitrotoluol	0.1 μg/l	1-5 μg/kg
		2,4-Diamino-6-Nitrotoluol	0.1 μg/l	2-5 μg/kg
		2,6-Diamino-4-Nitrotoluol	0.1 μg/l	1-5 μg/kg
		Tetryl	0.1 μg/l	5-50 μg/gk
		Hexogen (RDX)	0.1 μg/l	5-10 µg/kg
		Octogen (HMX)	0.1 μg/l	20-50 μg/kg
		PETN	0.1 μg/l	1 μg/kg
		Nitroglycerin	0.1 μg/l	1 μg/kg
		Diphenylamin	0.1 μg/l	1-5 μg/kg
		N-Nitrosodiphenylamin	0.1 μg/l	1-5 μg/kg
		Gesamter organischer Kohlenstoff (TOC)	-	0.1% von Trockensubstanz
Labor Spiez	Wasser (<i>Totalgehalt</i> und gelöst), Sediment inkl. Porenwasser	Chrom	0.1 μg/l	0.14 mg/kg
		Cobalt	0.1 μg/l	0.11 mg/kg
		Eisen	~ 1 µg/L	~ 1 mg/kg
		Nickel	0.1 μg/l	0.14 mg/kg
		Kupfer	0.1 μg/l	0.22 mg/kg
		Zink	0.5 μg/l	0.19 mg/kg
		Cadmium	0.1 μg/l	0.05 mg/kg
		Antimon	0.1 μg/l	0.30 mg/kg
		Blei	0.1 μg/l	0.10 mg/kg
		Quecksilber	50 pg/L	0.36 μg/kg
		Wismut	0.1 μg/l	~ 0.2 mg/kg

^{*} Die BG der Bachema AG für Feststoffe ist abhängig von der erhaltenen Probenmenge.

9 Quellenverzeichnis

¹ Geotechnique Apliqué Dériaz S.A.: Investigation historiques relatives aux depots et aux immersions de munitions dans les lacs Suisse – Bericht zuhanden des Generalsekretariat VBS, Genève, 30.09.2004

- ³ J. Mathieu, arWTE " Untersuchung Verteilung Munitionsrückstände im Gebiet Fliegerschiessplatz Forel", 15.01.2015
- ⁴ GBL Kt BE, Ueli Ochsenbein, Markus Zeh / BABS LS, Alfred Jakob / ar WTE, Jörg Mathieu "Vorschlag Konzept Wasseranalysen Neuenburgersee Forel zur Beurteilung allfälliger Schwermetall-Eintrag durch aktuelle Fliegerschiessübungen Luftwaffe VBS", 09.12.2014
- ⁵ Dr. M. Burger, A. Jakob, M. Stauffer /BABS Labor Spiez, Prüfbericht UA2015-16, 06.05.2015
- ⁶ Marc Stauffer, BABS Labor Spiez / Jörg Mathieu, Sandie Pasche, ar WTE, "Konzept Wasser- und Sedimentanalyse Neuenburgersee zur Beurteilung Gefährdungspotential Munitionsrückstände Fliegerschiessplatz Forel", 24.02.2021
- ⁷ Zur Sedimentanalyse des neolithischen Profilabschnitts S/28 in Delley/Portalban II, Uni Basel 1984
 ⁸ Interne technische Munitionsdatenbank armasuisse, W+T
- ⁹ Sauter, G., (2021). Étude préliminaire des empreintes chimiques dans les sédiments et mollusques à proximité de munitions immergées dans le Petit-Lac (Léman, Suisse), Master Thesis, Dept des sciences de la Terre. Université de Genève.

Referenz Nr. Acta Nova: ar-D-EB643401/1746 Seite 49 / 49

² J. Mathieu, A. Jakob, "Beurteilung Gewässergefährdung Fliegerschiessplatz Forel durch Metalleintrag Fliegerschiessübungen Luftwaffe VBS", Aktennotiz ar WTE / BABS Labor Spiez, z.H. GS VBS. 22. März 2013